Spring 2013 McNabb GDCTM Contest Calculus

NO Calculators Allowed

Assume all variables are real unless otherwise stated in the problem.

- 1. How many positive factors does 2013 have?
 - **(A)** 6
- **(B)** 8
- **(C)** 10
- **(D)** 12
- **(E)** 14

2. The value of

$$1+2+3+4-5+6+7+8+9-10+\cdots+46+47+48+49-50$$

is equal to

- **(A)** 600
- **(B)** 650
- **(C)** 725
- **(D)** 750
- **(E)** 800
- 3. I have two numbers in mind. The first number leaves a remainder of 4159 when divided by 5153 while the second number leaves a remainder of 5149 when divided by 5153. What is the remainder when the sum of these numbers is divided by 5153?
 - **(A)** 3135
- **(B)** 3455
- **(C)** 4144
- **(D)** 4155
- **(E)** 4344
- 4. If the equations $x^2 + ax + 21 = 0$ and $2x^2 + 19x + 35 = 0$ have a solution in common, what could be the value of the constant a?
 - **(A)** -10
- **(B)** -4
- **(C)** -2
- **(D)** 4
- **(E)** 10
- 5. Which transformation never changes the median of a list of a dozen distinct positive integers?
 - (A) adding 6 to each number in the list
 - (B) adding 3 to each of the three smallest numbers in the list
 - (C) subtracting 4 from each of the four largest numbers in the list
 - (D) doubling each number in the list
 - (E) taking the reciprocal of each number in the list

6. Which of these numbers is the least?

(A) $\log_8 144$ (B) $\log_4 72$ (C) $\log_{16} 288$ (D) $\log_2 48$

(E) $\log_{32} 576$

7. A careless librarian has reshelved the 5 volumes of an art encyclopedia in the correct order. Each volume has its spine facing out, which is correct of course, but has a 1/4 probability of being upside down. What is the probability that exactly one pair of front covers are now face to face?

(A) 1/64

(B) 2/31

(C) 3/16

(D) 5/24

(E) 69/128

8. Recall that $i = \sqrt{-1}$. What is the sum of the infinite geometric series $\sum_{n=0}^{\infty} (i/2)^n$?

(A) $-\frac{1}{5} + \frac{2}{5}i$ **(B)** $\frac{3}{5} - \frac{1}{5}i$ **(C)** $\frac{4}{5} + \frac{2}{5}i$ **(D)** 0

(E) *i*

9. The set of points in space equidistant from two skew lines is

(A) the empty set

(B) a single point

(C) a line

(D) the union of two intersecting lines

(E) none of the above

10. How many solutions in radians of $\sin 2\theta = \cos 3\theta$ lie in the interval $[0, 2\pi]$?

(A) 0

(B) 2

(C) 3

(D) 4

(E) 6

11. The integral

$$\int_0^{\pi/2} \frac{1}{1 + \cos \theta} \, d\theta$$

has value

(A) 3/5

(B) 5/6

(C) 1

(D) 7/5

(E) diverges

12. Find the minimum possible value of the expression $6 \cos x + 2 \cos 2x + 5$.

(A) 2/3

(B) 3/4

(C) 4/5

(D) 5/6

(E) 1

- 13. A thin rod lies along the x-axis with endpoints at x = 2 and x = 8. If the density of the rod at each point is directly proportional to the point's distance to the origin, what is the x-coordinate of the center of mass of the rod?
 - **(A)** 19/5
- **(B)** 4
- **(C)** 14/3
- **(D)** 28/5
- **(E)** 5
- 14. How many values of the constant k satisfy both: (i) $k \ge 1$ and
 - (ii) $\int_1^k (2k-2)x^k dx = 80$?
 - **(A)** 0
- **(B)** 1
- **(C)** 2
- **(D)** 3
- **(E)** 4

15. Determine

$$\lim_{n\to\infty} \int_0^{\pi/6} (\sin x)^n \, dx$$

- **(A)** 0
- **(B)** 1/10
- **(C)** $\pi/12$
- **(D)** 1/2
- (E) does not exist
- 16. The improper integral $\int_0^\infty \frac{1}{1+e^x} dx$ has the value
 - (A) ln 2
- **(B)** 1/2
- **(C)** 2/3
- **(D)** *e*
- (E) does not converge
- 17. Given that $\int_0^{10} \ln(x^2 10x + 26) dx = k$ then find the value of

$$\int_0^{10} x \ln(x^2 - 10x + 26) \, dx$$

- **(A)** 0
- **(B)** *k*
- **(C)** 2*k*
- **(D)** $k \ln 2$
- **(E)** 5*k*
- 18. The coefficient of x^8 in the Maclaurin power series of $f(x) = \frac{1+2x}{1-x-x^2}$ is equal to
 - **(A)** 47
- **(B)** 76
- **(C)** 91
- **(D)** 101
- **(E)** 123